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ayVeriﬁcation of Concurrent programs: The Temporal Framewox}-([l])m

We first introduce temporal logic as a tool for reasoning about sequences of states. Modcls
of concurrent programs based both on transition graphs and on linear-text representations are
presented and the notions of concurrent and fair executions are defined.

The general temporal language is then specialized to reason about those execution sequences
that are fair computations of a concurrent program. Subsequently, the language is used to describe
properties of concurrent programs.

The set of interesting properties is classified into invariance (safetly), eventuality (liveness),
and precedence (until) properties. Among the propertics studied are: partial correctness, global
invariance, clcan behavior, mutual exclusion, absence of deadlock, terminatlion, total corrcctness,

intermittent assertions, accessibility, responsiveness, safe liveness, absence of unsolicited response,
{air responsiveness, and precedence.

\
bJ”Verification of Concurrent Programs: Temporal Proof Principles([2]).

_J

Ilere, we present temporal proof methods for establishing properties of concurrent programs.

We consider threc classes of properties: invariances, eventualities (liveness properties) and precedence
(until properties).

The proof principle for establishing invariance properties is based on computational induction,
and is a gencralization of the tnductive assertions method. For a restricled class of programs we
present an algorithm for the automatic derivation of invariant assertions.

In order Lo establish eventuality propertics we present several principles which translate the
structure of the program into basic iemporal statements about its behavior. These principles can
be viewed as providing the temporal semantics of the program. The basic statements thus derived
arc then combined into temporal proofs for the estblishment of eventuality properties. This method
generalizes the method of intermittent assertions. '

An until property is shown to be essentially a combination of a conditional invariance and an
eventuality. Consequently the prool method for establishing an until properly is a generalization !
of the method for establishing eventualities,

All the methods are applied to examples.-

c)\\feriﬁcation of Sequential Programs: Temporal Axiomatization‘(‘y[:.i_]_)’.

\

Earlicr, we introduced temporal logic as a tool for reasoning about concurrent programs and ™ , ‘
specilying their propertics ([1]) and presented proof principles for establishing these propertics ([2]). ~ !
ere, we restrict oursclves to delerministic, sequential programs. We present a proof system in !
which propertics of such programs, expressed as Lemporal lformulas, can be proved formally. h
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Our proof system consists of three parts: a general part claborating the properties of temporal
logic, a domatn part giving an axiomatic description of the data domain, and a progrem part giving
t an axiomatic description of the program under consideration.

We illustrate the use of the proof system by giving two alternative formal proofs of the total
correctness of a simple program.

i
d) Synthesis of Communicating Processes from Temporal Specifications{[4]).

We apply Propositional Temporal Logic (PTL) to the specification and synthesis of the synchro-
nization part of communicating processes. To specify a process, we give a PTL formula that
describes its sequence of communications. The synthesis is done by constructing a model of the

given specifications using a tableau-like satisfiability algorithm for PTL. This model can then be
interpreted as a program.

e)"Deductive Synthesis of the Unification Algorithr&‘([S]).

The deductive epproach is a formal program construction method in which the derivation
of a program from a given specificalion is regarded as a theorem-proving task. To construct a
program whose output satisfies the conditions of the specification, we prove a theorem stating the
existence of such an output. The proofis restricted to be sufficiently constructive so that a program
computing the desired output can be extracted directly from the proof. The program we obtain

is applicative and may consist of several mutually recursive procedures. The proof constitutes a .
demonstration of the correctness ol this program, v

To exhibit the full power of the deductive approach, we apply it to a nontrivial example —
the synthesis of a unification algorithm. Unification is the process of finding a common instance
of two expressions. Algorithms to perform unification have been central to many theorem-proving
systems and to some programming-language processors.

The task of deriving a unification algorithm automatically is beyond the power of existing
program synthesis systems. In this paper we use the deductive approach to derive an algorithm from
a simple, high-level specification of the unification task. We will identify some of the capabilities
-—required of a theorem-proving syslem to perform this derivalion automatically.
Ny AN '-,\

f)Bpecial Relations in Program Synthetic Déduccion.([(i]).

Program synthesis is the automated derivation of a computer program from a given specifi-
cation. In the deductive approach, the synthesis of a program is regarded as a theorem-proving
problem; the desired program is constructed as a by-product of the proof. This paper presents
a formal deduction system for program synthesis, with special features for handling equality, the
cquivalence connective, and ordering relations.

In proving theorems involving the cquivalence conneclive, it is awkward Lo remove all the
} quantifiers before attempting the prool. The system therefore deals with partially skolemized )
sentences, in which some of the quantifiers may be left in place. A rule is provided for removing ‘
individual quantifiers when required alter the proof is under way.

The system is also nonclausal; i.c., the thecorem does not need to be put into conjunctive
normal form. The cquivalence, implication, and other conncctives may be left intact,
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